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Abstract

This work is concerned with identification of Wiener systems whose outputs are measured by binary-valued sensors. The system consists of
a linear FIR (finite impulse response) subsystem of known order, followed by a nonlinear function with a known parametrization structure. The
parameters of both linear and nonlinear parts are unknown. Input design, identification algorithms, and their essential properties are presented
under the assumptions that the distribution function of the noise is known and the nonlinearity is continuous and invertible. It is shown that under
scaled periodic inputs, identification of Wiener systems can be decomposed into a finite number of core identification problems. The concept
of joint identifiability of the core problem is introduced to capture the essential conditions under which the Wiener system can be identified
with binary-valued observations. Under scaled full-rank conditions and joint identifiability, a strongly convergent algorithm is constructed. The
algorithm is shown to be asymptotically efficient for the core identification problem, hence achieving asymptotic optimality in its convergence
rate. For computational simplicity, recursive algorithms are also developed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Binary-valued sensors are commonly employed in practical
systems since they are more cost effective than regular sensors.
In some applications, they are the only ones available during
real-time operations (Wang, Kim, & Sun, 2002). More impor-
tantly, binary-valued observations are the fundamental building
blocks for quantized observations that are an integrated part of
communication channels.

Wiener systems are typical nonlinear systems, which repre-
sent a nonlinear dynamic system with a dynamic linear part,
followed by a memoryless nonlinear function, shown schemat-
ically in Fig. 1. Wiener systems have been successfully used
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to represent systems in many practical applications such as bi-
ological systems (Hunter & Korenberg, 1986; Wang & Wang,
2002; Wang, Yin, & Wang, 2004), signal processing, communi-
cations and control (Norquay, Palazoglu, & Romagnoli, 1999),
etc.

This paper focuses on identification of Wiener systems with
binary-valued output observations. Since finite quantization
may be regarded as a finite cascading of binary sensors, binary-
valued observations are building blocks for quantization. When
the output of a Wiener system must be measured by a binary-
valued sensor or sent through a communication channel, it
can be represented as a Wiener system with binary-valued or
quantized output observations. Consequently, understanding
identification of Wiener systems with binary-valued obser-
vations will be essential for studying both identification of
nonlinear systems and impact of communication channels on
system models. Binary-valued observations supply very lim-
ited information on the system outputs, and hence introduce
difficulties in system modeling, identification, and control. In
Wang, Zhang, and Yin (2003), we investigated the identifi-
cation errors, time complexity, input design, and impact of
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Fig. 1. Wiener systems.

disturbances and unmodeled dynamics on identification accu-
racy and complexity for linear systems that are modeled by im-
pulse responses with binary-valued observations. The work was
extended to rational models and unknown noise distributions
in Wang, Yin, and Zhang (2006a). Recently, the methodologies
have been extended to system identification with quantized ob-
servations in Wang and Yin (2007) and Wang, Yin, and Zhang
(2006b). Most significantly, the optimality of the identification
algorithms has been established by showing the Cramér–Rao
lower bound is asymptotically achieved Wang and Yin (2007).

Related works on identification with quantized output mea-
surements can be found in Krishnamarty (1995) and Wigren
(1995, 1998). Wigren (1995) considered the identification
problem of linear FIR (finite impulse response) systems with
quantized output measurements and obtained local convergent
parameter estimates by using a recursive search algorithm
with approximate gradients. Based on this algorithm, Wigren
(1998) studied linear FIR systems and gave global convergent
identification results. Krishnamarty (1995) dealt with ARMA
model with binary-valued observations, where the density of
the noise is assumed to be symmetric about zero. However,
the aforementioned research and our early investigations were
limited to linear systems.

There have been substantial efforts in nonlinear system
identification. The reader is referred to Sjoberg et al. (1995),
Bai (2003), and Roll, Nazin, and Ljung (2005) for extensive
exposition of the existing literature. Within nonlinear system
identification, Wiener/Hammerstein structures have drawn
much attention due to their structural simplicity and connec-
tions to linear systems (Hunter & Korenberg, 1986; Schoukens,
Nemeth, Crama, Rolain, & Pintelon, 2003; Verhaegen &
Westwick, 1996) Identification methodologies used for Wiener
structures may be loosely classified by iterative algorithms
(Hunter & Korenberg, 1986; Korenberg & Hunter, 1998), cor-
relation techniques (Billings, 1980), least-squares estimation
and singular value decomposition methods (Bai, 1998; Lacy
& Bernstein, 2002), stochastic recursive algorithms (Chen,
2006; Hu & Chen, 2005), etc. Several identification algorithms
were analyzed in Wigren (1994) for their convergence and
error bounds. Frequency-domain identification methods for
Wiener/Hammerstein structures were explored in Bai (1998)
and Ninness and Gibson (2002). All these approaches require
output measurements by regular sensors.

Our work in this paper has essential differences with pre-
vious research, mainly due to introduction of binary mea-
surements into the system configuration. Interaction between
the nonlinear sensor and the nonlinear subsystem imposes a
challenge in relating empirical measures to system parameters
and ensuring identifiability, which can be readily established

for linear systems (Wang et al., 2003). Different from the
traditional gradient methods, we use the methods of empiri-
cal measures, periodic input design, and recursive algorithms
to develop strongly convergent algorithms for Wiener system
identification with binary-valued observations. One of the
advantages of this approach is: we are able to establish the
optimality of the algorithms by using the Fisher information.
Assuming that the noise distribution function is known, it
is shown that under scaled periodic inputs, identification of
Wiener systems can be decomposed into a finite number of
core identification problems. The concept of joint identifia-
bility is introduced to capture the essential conditions, under
which the Wiener system can be identified with binary-valued
observations. Under joint identifiability and input full-rank
conditions, a global convergent algorithm is constructed. The
algorithm is shown to be asymptotically efficient for the core
identification problem, hence achieving asymptotically opti-
mal convergence rate. For computational simplicity, simplified
recursive algorithms are also discussed.

The rest of the paper is organized as follows. The structure of
Wiener systems using binary-valued observations is formulated
in Section 2. It is shown in Section 3 that under scaled periodic
inputs, identification of Wiener systems can be decomposed
into a number of core identification problems. Basic properties
of periodic signals and the concepts of joint identifiability are
introduced in Section 4. Based on the algorithms for the core
problems, Section 5 presents the main identification algorithms
for Wiener systems. Under scaled full-rank inputs and joint
identifiability, the identification algorithms for Wiener systems
are shown to be strongly convergent (in the sense of conver-
gence with probability one). Identification algorithms for the
core problems are constructed in Section 6. By comparing the
estimation errors with the Cramér–Rao lower bound, the algo-
rithms are shown to be asymptotically efficient, hence achiev-
ing asymptotically optimal convergence speed. For simplicity,
recursive algorithms are discussed in Section 7 that can be used
to find system parameters under certain stability conditions. Il-
lustrative examples are presented in Section 8 to demonstrate
input design, identification algorithms, and convergence results
of the methodologies discussed in this paper. Section 9 provides
a brief summary of the findings of this paper.

2. Problem formulation

Consider the system in Fig. 2, in which⎧⎨⎩x(k) =
n−1∑
i=0

aiu(k − i),

y(k) = H(x(k), �) + d(k),

(1)

where u(k) is the input, x(k) the intermediate variable, and
d(k) the measurement noise. H(·, �): DH ⊆ R → R is a
parameterized static nonlinear function with domain DH and
vector-valued parameter � ∈ �� ⊆ Rm. Both n and m are
known. By defining �(k) = [u(k), . . . , u(k − n + 1)]T and
�=[a0, . . . , an−1]T, the linear dynamics can be expressed com-
pactly as x(k) = �(k)T�.
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Fig. 2. Wiener systems with binary-valued observations.

Assumption A1. The noise {d(k)} is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables with
finite variance. The distribution function F(·) of d(1) is known,
which is continuously differentiable together with a continu-
ously differentiable inverse F−1(·) and a bounded density f (·)
with f (x) �= 0 for x �= 0.

Assumption A2. For any given � ∈ ��, H(x, �) is bounded
for any finite x, continuous and invertible in x.

The output y(k) is measured by a binary sensor with thresh-
old C. That is, the sensor output s(k) = S(y(k)) is a function
of y(k) indicating only whether y(k)�C or y(k) > C, where
C is known. We use the indicator function

s(k) = S(y(k)) = I{y(k)�C} =
{

1 if y(k)�C,

0 otherwise
(2)

to represent the sensor.

Remark 1. The threshold C has significant impact on iden-
tification accuracy. For the binary series estimation algorithm
employed in Wigren (1995), it was shown that for improving
identification accuracy, it is necessary to have C �= 0 and is de-
sirable that signal energy is centered around C. In Wang et al.
(2003), C �= 0 is also shown to be required in the worst-case
identification framework. However, this constraint is no longer
relevant under the stochastic framework introduced in Wang
et al. (2003).

This paper employs the approach of empirical measures.
While this approach requires the knowledge of noise distri-
bution functions (Wang et al., 2003), or its estimation (Wang
et al., 2006a), the essential requirement is that the input and C
are selected such that C − y(k) lies within the support of the
noise density f (·) (otherwise, sk ≡ 0 or sk ≡ 1, w.p.1, and
the sensor does not provide useful information on yk). If f (·)
has infinite support, such as the normal distribution, theoreti-
cally any C is valid. However, the Cramér–Rao lower bound,
which will be derived subsequently, will characterize precisely
the impact of C selection on identification accuracy in this ap-
proach. In other words, it is desirable to design C and inputs to
minimize the Cramér–Rao lower bound. Threshold selection is
studied in depth in Wang et al. (2006b) and will not be explored
further in this paper.

Parametrization of the static nonlinear function H(·, �)

depends on specific applications. Often, the structures of
actual systems can provide guidance in selecting function

forms whose parameters carry physical meanings (Wang &
Wang, 2002; Wang et al., 2004). On the other hand, when
a black-box approach is employed, namely, the models rep-
resent input/output relationships based on data only, one
may choose some generic structures for theoretical and al-
gorithm development. For instance, a common structure is
H(x, �) =∑m−1

i=0 bihi(x), where hi(x), i = 0, . . . , m − 1, are
base functions and �=[b0, b1, . . . , bm−1]T ∈ Rm is a vector of
m unknown parameters. For example, the typical polynomial
structure is

H(x, �) =
m−1∑
i=0

bix
i . (3)

In this paper, we will discuss input design, derive joint estima-
tors of � and �, and establish their identifiability, convergence,
convergence rates, and efficiency (optimality in convergence
rate).

3. Basic input design and core identification problems

We first outline the main ideas of using 2n(m + 1)-scaled
periodic inputs and empirical measures to identify Wiener sys-
tems under binary-valued observations. It will be shown that
this approach leads to a core identification problem, for which
identification algorithms and their key properties will be estab-
lished.

Unlike adaptive controls, the purpose of this paper is only
on parameter estimation. And the key rule for selecting inputs
is to provide sufficient information to support identifica-
tion accuracy. The persistent and decaying excitation condi-
tions described in, for instance, Chen and Guo (1991), are
typical conditions for traditional identification algorithms to
ensure convergence and consistency of the parameter estima-
tors. It is well established that there are many classes of per-
sistent excitation signals. The periodic inputs are particularly
useful in supporting the identification method of this paper,
although theoretically many other signals can potentially be
used also. Not only they provide sufficient information, but
they lead to much simplified identification algorithms and well
established convergence properties.

The input signal, which will be used to identify the system,
is a 2n(m + 1)-periodic signal u whose one-period values are
(�0v, �0v, �1v, �1v, . . . , �mv, �mv), where v = (v1, . . . , vn) is
to be specified.1 The scaling factors {�0, �1, . . . , �m} are as-
sumed to be nonzero and distinct.

If under the 2n input values u = (v, v), the linear subsystem
has the following n consecutive output values at n, . . . , 2n−1:

�i = a0u(n + i) + · · · + an−1u(1 + i), i = 0, . . . , n − 1,

then the output under the scaled input (qv, qv) is

x(n + i) = q�i , i = 0, . . . , n − 1.

1 The reason for repeating each scaled vector, such as �0v, �0v, etc., is to
simplify algorithm development and convergence analysis, not a fundamental
requirement.
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Without loss of generality, assume �0 �= 0.2 The output of the
linear subsystem contains the following (m + 1)-periodic sub-
sequence with its single period values {�0�0, �1�0, . . . , �m�0}:
x(n) = �0�0, x(3n) = �1�0, . . . ,

x((2m + 1)n) = �m�0, . . . .

By concentrating on this subsequence of x(k), under a new in-
dex l with l = 1, 2, . . ., the corresponding output of the nonlin-
ear part may be rewritten as

ỹ(l(m + 1)) = H(�0�0, �) + d̃(l(m + 1)),

ỹ(l(m + 1) + 1) = H(�1�0, �) + d̃(l(m + 1) + 1),

...

ỹ(l(m + 1) + m) = H(�m�0, �) + d̃(l(m + 1) + m). (4)

The equations in (4) form the basic observation relationship for
identifying � and �0.

For � = [�0, . . . , �m]T and a scalar �, we denote

H(��, �) = [H(�0�, �), . . . , H(�m�, �)]T. (5)

Then, (4) can be expressed as

Ỹ (l) = H(��, �) + D̃(l), l = 0, 1, . . . , (6)

where � �= 0, Ỹ (l) = [̃y(l(m + 1)), . . . , ỹ(l(m + 1) + m)]T and
D̃(l)=[d̃(l(m+1)), . . . , d̃(l(m+1)+m)]T. Correspondingly,
the outputs of the binary-valued sensor on Ỹ (l) are S̃(l) =
S(Ỹ (l)), l = 0, 1, . . . .

Let � = [�0, . . . , �m]T�[�, �T]T. We introduce the following
identification problem.

Core identification problem: Estimate the parameter � from
observations on S̃(l).

Denote 	i=H(�i�, �), i=0, 1, . . . , m. Then 	=[	0, . . . , 	m]T

= H(��, �) and (6) can be rewritten as

Ỹ (l) = 	 + D̃(l), l = 0, 1, . . . . (7)

The main idea of solving the core identification problem is first
to estimate 	, and then to solve the interpolation equations

	i = H(�i�, �), i = 0, 1, . . . , m (8)

for � and �. The basic properties on signals and systems that
ensure solvability of the core identification problem will be
discussed next.

4. Properties of inputs and systems

We first establish some essential properties of periodic sig-
nals and present the idea of joint identifiability, which will play
an important role in the subsequent development. Some related
ideas can be found in Horn and Johnson (1985), Lancaster and
Tismenetsky (1985), and Wang et al. (2006a).

2 It will become clear that when v is full rank, to be discussed later,
there exists at least one i such that �i �= 0.

4.1. Generalized circulant matrices and periodic inputs

An n × n generalized circulant matrix (Lancaster &
Tismenetsky, 1985):

T =

⎡⎢⎢⎢⎢⎢⎢⎣

vn vn−1 vn−2 · · · v1

qv1 vn vn−1
. . . v2

qv2 qv1 vn

. . . v3
...

. . .
. . .

. . .
...

qvn−1 qvn−2 qvn−3 · · · vn

⎤⎥⎥⎥⎥⎥⎥⎦ (9)

is completely determined by its first row [vn, . . . , v1] and q,
which will be denoted by T (q, [vn, . . . , v1]). In the special case
of q = 1, the matrix in (9) is called circulant matrix and will
be denoted by T ([vn, . . . , v1]).

Definition 1. An n-periodic signal generated from its single-
period values (v1, . . . , vn) is said to be full rank if the circulant
matrix T ([vn, . . . , v1]) is full rank.

An important property of circulant matrices is the following
frequency-domain criterion.

Lemma 1 (Horn & Johnson, 1985). If T = T (q, [vn, . . ., v1])
is a generalized circulant matrix, then the eigenvalues of T are
{q
k, k = 1, . . . , n} and the determinant of T is

det(T ) =
n∏

k=1

q
k , (10)

where 
k is the discrete Fourier transform (DFT) of vjq
−j/n,

j = 1, . . . , n.


k =
n∑

j=1

vjq
−j/n e−i�kj , �k = 2�k

n
, k = 1, . . . , n.

Hence, T is full rank if and only if 
k �= 0, k = 1, . . . , n.

Proof. Let P =
[

0 In−1
q 0

]
, whose characteristic polynomial

is det(In − P)= n − q and eigenvalues are q1/n ei�k , k =
1, . . . , n. Then T can be represented by T =∑n

j=1 vjP
n−j . For

P and k = 1, . . . , n, if k is the corresponding eigenvector of
q1/n ei�k , then

T k =
n∑

j=1

vjP
n−jk =

n∑
j=1

vj (q
1/nei�k )n−jk = q
kk .

Therefore, q
k is an eigenvalue of T and (10) is confirmed. By
hypothesis, q �= 0. Hence T is full rank if and only if 
k �= 0,
k = 1, . . . , n. �

For the special case of q=1, we have the following property.

Corollary 1. An n-periodic signal generated from v =
(v1, . . . , vn) is full rank if and only if its DFT 
k = V (�k) =∑n

j=1vj e−i�kj is nonzero at �k = 2�k/n, k = 1, . . . , n.
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Recall that F[v] = {
1, . . . , 
n} is the frequency samples of
the n-periodic signal u, where F[·] is the DFT. Hence, Defini-
tion 1 may be equivalently stated as “an n-periodic signal v is
said to be full rank if its frequency samples do not contain 0.”
In other words, the signal contains n nonzero frequency com-
ponents.

Definition 2. A 2n(m + 1)-periodic signal u is called
a scaled full-rank signal if its single-period values are
(�0v, �0v, �1v, �1v, . . . , �mv, �mv), where v = (v1, . . . , vn)

is full rank, i.e., 0 /∈F[v]; �j �= 0, j = 1, . . . , m, and �i �= �j ,
i �= j . We use U to denote the class of such signals.

Definition 3. An n(m+ 1)-periodic signal u is called an expo-
nentially scaled full-rank signal if its single-period values are
(v, qv, . . . , qmv), where q �= 0 and q �= 1, and v=(v1, . . . , vn)

is full rank. We use Ue to denote this class of input signals.

4.2. Joint identifiability

Joint identifiability conditions mandate that the unknown pa-
rameters � and � can be uniquely and jointly determined by the
interpolation conditions (8).

Prior information: The prior information on the unknown
parameters � = [�, �T]T for the core identification problem is
� ∈ � ⊆ Rm+1. Denote Rm

d ={�=[�1, . . . , �m]T ∈ Rm : �j �=
0, ∀j ; �i �= �j , i �= j}, namely the set of all vectors in Rm that
contains nonzero and distinct elements.

Definition 4. Suppose that Υ ⊆ Rm+1
d . H(x; �) is said to

be jointly identifiable in � with respect to Υ , if for any � =
[�0, . . . , �m]T ∈ Υ , H(��; �) is invertible in �, namely 	 =
H(��; �) has a unique solution � ∈ �. In this case, elements in
Υ are called sufficiently rich scaling factors.

Depending on the parametric function forms H(·, �) and the
domain DH , the set of sufficiently rich scaling factors can vary
significantly. For example, the polynomial class of functions
of a fixed order has a large set Υ . The polynomial class has
been used extensively as the nonlinear part of Wiener systems
and their approximations in Celka, Bershad, and Vesin (2001),
Norquay et al. (1999), and Wigren (1994).

When the base functions are polynomials of order m, H(x, �)

can be expressed as

H(x, �) =
m∑

j=0

bjx
j with bm �= 0. (11)

Then H(�i�, �) =∑m
j=0 bj�

j�j
i , i = 0, 1, . . . , m. Apparently,

one cannot uniquely determine m+2 parameters �, b0, . . . , bm

from m+1 coefficients of the polynomial. A typical remedy to
this well-known fact is normalization of the parameter set by
assuming one parameter, say, bl = 1 for some l. In this case,
the coefficient equations become bj�

j = cj , j �= l and �l = cl .
For given cj , to ensure uniqueness of solutions bj , j �= l and
� to the equations, l must be an odd number.

We now show that H(x, �) satisfying Assumption A2 con-
tains at least one nonzero odd-order term. Indeed, if H(x, �)

contains only even-order terms, it must be an even function. It
follows that H(x, �)=H(−x, �), namely it is not an invertible
function. This contradicts Assumption 2.

Since H(x, �) contains at least one nonzero odd-order
term blx

l for some odd integer l, without loss of gener-
ality we assume bl = 1. The reduced parameter vector is
�0 = [b0, . . . , bl−1, bl+1, . . . , bm]T, which contains only m
unknowns. Such polynomials will be called “normalized poly-
nomial functions of order m.”

Proposition 1. Under Assumption A2, all normalized polyno-
mial functions of order m are jointly identifiable with respect
to Rm

d .

Proof. For any given � = [�0, . . . , �m] ∈ Rm+1
d , the interpola-

tion equations

m∑
j=0

cj�
j
i = 	i for i = 0, . . . , m (12)

can be rewritten as Rc = 	, where 	 is defined in (7) and

R=

⎛⎜⎜⎜⎝
1 �0 · · · �m

0

1 �1
. . . �m

1
...

. . .
. . .

...

1 �m · · · �m
m

⎞⎟⎟⎟⎠ , c =

⎛⎜⎜⎝
c0
c1
...

cm

⎞⎟⎟⎠ .

Since the determinant of the Vandermonde matrix

detR=
∏

0� i<j �m−1

(�j − �i ) �= 0

for distinct �i , i=0, . . . , m−1, we have c=R−1	. Furthermore,
the equation �l = cl yields the unique solution � = (cl)

1/l �= 0
by hypothesis. Then, bj = cj /�

j , j �= l, solve uniquely for the
remaining parameters. Consequently, H(��; �0) is invertible as
a joint function of � and �0. This implies that H(x, �0) is jointly
identifiable with respect to any vector in Rm

d . �

Other basis can also be used. For instance, H(x, �)=�+ex ,
where � �= 0. Under the prior information � = {[�, �T]T :
� > 0, � �= 0}, consider Υ = {(�0, �1) : �0 > 0, �1 < 0}. The
interpolation equations are{

� + e�0� = 	0,

� + e�1� = 	1.
(13)

These imply

e�0� − e�1� = 	0 − 	1. (14)

It is easily seen that for �0 > 0 and �1 < 0, the derivative of
(14) is d(e�0� − e�1�)/d� = �0e�0� − �1e�1� > 0. Hence, (14)
has a unique solution, which indicates that H(x, �) is jointly
identifiable with respect to Υ .

Joint identifiability is certainly not a trivial condition. For the
above function form H(x, �) = � + ex , Υ cannot be expanded
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to R2
d . Indeed, if one selects �0 = −2, �1 = −1, 	0 = 1.075,

	1 = 1.2, then (13) becomes{
� + e−2� = 1.075,

� + e−� = 1.2.

Both � = 1.921, � = 1.054 and � = 0.158, � = 0.346 solve
the equations. By definition, H(x, �) = � + ex is not jointly
identifiable with respect to R2

d .

5. Identification algorithms

Based on periodic inputs and joint identifiability, we now
derive algorithms for parameter estimates and prove their con-
vergence.

Assumption A3. (i) The prior information on � and � is that
� �= 0, � �= 0, � ∈ �� and � ∈ �� such that under �� and
��, the set Υ of sufficiently rich scaling factors is nonempty.
C − y(k) lies within the support of the noise density f (·) for
k = 1, 2, . . . .

(ii) H(x, �) is jointly identifiable with respect to Υ and con-
tinuously differentiable with respect to both x and �.

By using the vector notation, for j = 1, 2, . . . ,

X(j) = [x(2(j − 1)(m + 1)n + n), . . . ,

x(2j (m + 1)n + n − 1)]T,

Y (j) = [y(2(j − 1)(m + 1)n + n), . . . ,

y(2j (m + 1)n + n − 1)]T,

�̃(j) = [�(2(j − 1)(m + 1)n + n), . . . ,

�(2j (m + 1)n + n − 1)]T,

D(j) = [d(2(j − 1)(m + 1)n + n), . . . ,

d(2j (m + 1)n + n − 1)]T,

S(j) = [s(2(j − 1)(m + 1)n + n), . . . ,

s(2j (m + 1)n + n − 1)]T, (15)

the observations can be rewritten in block form as{
Y (j) = H(X(j), �) + D(j),

X(j) = �̃(j)�.

The input is a scaled 2n(m + 1)-periodic signal with single
period values

(�0v, �0v, �1v, �1v, . . . , �mv, �mv),

where v = (v1, . . . , vn) is full rank.
By periodicity, �̃(j)= �̃, for all j and �̃ can be decomposed

into 2(m+1) submatrices �i , i=1, . . . , 2(m+1), of dimension
n × n: �̃ = [�T

1 , �T
2 , . . . ,�T

2(m+1)]T. Denote the n × n circu-
lant matrix � = T ([vn, . . . , v1]). Then the odd-indexed block
matrices3 satisfy the simple scaling relationship

�1 = �0�, �3 = �1�, . . . ,�2m+1 = �m�. (16)

3 The even-indexed block matrices are not be used in the proof.

Remark 2. In (�0v, �0v, �1v, �1v, . . . , �mv, �mv), there are
always two identical subsequences �iv, i = 0, . . . , m appear-
ing consecutively. The main reason for this input structure is to
generate block matrices that satisfy the above scaling relation-
ship (16).

Remark 3. We use the following notation for element-wise
vector functions. For a scalar function g(·) and a vector x =
[x1, . . . , xl]T ∈ Rl , the boldface symbol g(x) represents

g(x) = [g(x1), . . . , g(xl)]T ∈ Rl . (17)

In addition, if g(x) is invertible, g−1(x) represents the
component-wise inverse

g−1(x) = [g−1(x1), . . . , g
−1(xl)]T ∈ Rl . (18)

Similarly, for �=[�1, . . . , �l]T ∈ Rl and c=[c1, . . . , cl]T ∈ Rl ,
we use the vector notation I{��c} = [I{�1 �c1}, . . . , I{�l �cl}]T.
1� and 0� ∈ R� will denote column vectors with all components
being 1 and 0, respectively. For a given threshold C, Cl =
C1l ∈ Rl .

5.1. Identification algorithms for the core problem

For the core problem (7), let

z̃(N) = 1

N

N−1∑
l=0

S̃(l)

= 1

N

N−1∑
l=0

I{D̃(l)�Cm+1 − H(��, �)},

which is the empirical distribution of D̃(k) at Cm+1−H(��, �).
Define4

�̃(N) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z̃(N) if 0 < z̃(N) < 1,

1

N
if z̃(N) = 0,

N − 1

N
if z̃(N) = 1.

(19)

Then, by the strong law of large numbers (Feller 1968, 1971)

�̃(N) → p = F(Cm+1 − H(��, �)) w.p.1. (20)

By Assumption A1, F has a continuous inverse. Hence,

	(N) = Cm+1 − F−1(̃�(N))

→ 	 = Cm+1 − F−1(p) = H(��, �) w.p.1.

By Assumption A3, H is invertible as a function of �=[�, �T]T.
As a result, �(N) = H−1(	(N)) → � w.p.1. In summary, we
have the following theorem.

4 This modification is to avoid the points z̃(N) = 0 or z̃(N) = 1 since
the distribution function F(·) is not invertible at these points. Since the
probability of these points are asymptotically zero as N → ∞, the consequent
analysis and conclusions will not be affected by this modification. As a result,
this modification will not be explicitly stated in the subsequent proofs and
development.
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Theorem 1. Under Assumptions A1–A3, let �(N)=H−1(	(N))

= H−1(Cm+1 − F−1(̃�(N))). Then

�(N) → � w.p.1 as N → ∞. (21)

Proof. Under Assumptions A1 and A2, H−1 and F−1 are con-
tinuous. By the above analysis, we have

�(N) = H−1(Cm+1 − F−1(̃�(N)))

→ H−1(Cm+1 − F−1(p)) = H−1(	) = � w.p.1. �

5.2. Parameter estimates of the original problem

Parameter estimates are generated as follows. Define z(N)=
(1/N)

∑N−1
l=0 S(l) and

�(N) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z(N) if 0 < z(N) < 1,

1

N
if z(N) = 0,

N − 1

N
if z(N) = 1.

(22)

Then, the strong law of large numbers yields that

�(N) → � = F(C2(m+1)n − H(�̃�, �)) w.p.1. (23)

Equation in (23) for system (1) contains the following equations
by extracting the odd-indexed blocks

H(�j��; �) = Cn − F−1(�2j ), j = 0, . . . , m.

We now show that this subset of equations are sufficient to
determine � and � uniquely.

Theorem 2. Suppose u ∈ U. Under Assumptions A1–A3,

� = F(C2n(m+1) − H(�̃�, �)) (24)

has a unique solution (�∗, �∗).

Proof. Consider the first block �1� of �̃�. Since v is full rank,
�1 is a full-rank matrix. It follows that for any nonzero �, �1� �=
0n. Without loss of generality, suppose that the i∗th element
� of �1� is nonzero. By construction of �̃, we can extract
the following m nonzero elements from �̃�: the (2nl + i∗)th
element, l = 0, . . . , m, is �l�. Extracting these rows from the
equation H(�̃�, �)=C2n(m+1)−F−1(�) leads to a core problem

H(��, �) = Cn − F−1(̃�), (25)

where � = [�0, �1, . . . , �m]T. Since � �= 0 and � has distinct
elements, �� has distinct elements. By hypothesis, H(x; �) is
jointly identifiable. It follows that (25) has a unique solution
(�∗, �∗).

From the derived �∗, we denote the first n equations of
H(�̃�, �) = C2n(m+1) − F−1(�) by

H(��, �∗) = Cn − F−1(�1). (26)

By Assumption A2, H−1(x; �∗) exists (as a function of x). Since
v is full rank, � = T ([vn, . . . , v1]) is invertible. As a result,

�∗ =�−1H−1(Cn −F−1(�1), �∗) is the unique solution to (26).
This completes the proof. �

A particular choice of the scaling factors �j is �j = qj ,
j = 0, 1, . . . , m for some q �= 0 and q �= 1. In this case, the
period of input u can be shortened to n(m+ 1) under a slightly
different condition.

Let �(N) be defined as in (22), with dimension changed from
2n(m+ 1) to n(m+ 1). By the strong law of large numbers, as
N → ∞,

�(N) → � = F(Cn(m+1) − H(�′�, �)) w.p.1 (27)

for some (n(m + 1)) × n matrix �′. Partition �′ into (m + 1)

submatrices �′
i , i = 1, . . . , m + 1, of dimension n × n:

�′ = [(�′
1)

T, (�′
2)

T, . . . , (�′
m+1)

T]T. (28)

If u ∈ Ue, then it can be directly verified that �′
l+1 = ql�′ =

qlT (q, [vn, . . . , v1]), l = 0, 1, . . . , m. We have the following
result, whose proof is similar to that of Theorem 2 and hence
is omitted.

Theorem 3. Suppose u ∈ Ue. Under Assumptions A1–A3,

� = F(Cn(m+1) − H(�′�, �)) (29)

has a unique solution (�∗, �∗).

5.3. Identification algorithms and convergence of estimates

The �(N) = [�0(N), . . . , �2n(m+1)−1(N)]T in (22) has
2n(m + 1) components for a scaled full-rank signal u ∈ U.
But there are only n + m unknown parameters. Consider �� =
[�0, . . . , �n−1]T. We separate the components to n groups, for
i = 0, . . . , n− 1, �i (N)=[�i (N), �i+2n(N), . . . , �i+2nm(N)]T.
Let �i (N) and �i (N) satisfy

�i (N) = [�i0(N), . . . , �im(N)]T

= F(Cm+1 − H(��i (N), �i (N))). (30)

Then, by (23) we have

�i (N) → �i = F(Cm+1 − H(�i�, �)). (31)

If �i �= 0, (31) becomes a core identification problem. Further-
more, since � �= 0n and � is full rank, there exists i∗ such that
�i∗ �= 0. The identification algorithms include the following
steps:

1. Calculate i∗ = argmaxi |�i | to choose nonzero �i∗ . If there
exists j �= k such that �ij (N) = �ik(N), then let �i (N) = 0
and �i (N) = 0m. Otherwise, �i (N) and �i (N) are solved
from (30). Let i∗(N) = argmaxi |�i (N)|, where “argmax”
means the argument of the maximum.

2. Estimate � from core identification problem. �(N)=�i∗(N).
3. Estimate �. �(N) = �−1H−1(Cn − F−1(�∗(N)), �(N)),

where �∗(N) = [�0(N), �1(N), . . . , �n−1(N)]T.



Author's personal copy

Y. Zhao et al. / Automatica 43 (2007) 1752–1765 1759

Theorem 4. Suppose u ∈ U. Under Assumptions A1–A3,

�(N) → �, �(N) → � w.p.1 as N → ∞. (32)

Proof. By Assumption A2, �i (N) and �i (N) can be solved
from step 1. By core identification problems, if �i �= 0,
�i (N) → �i w.p.1 as N → ∞. Hence,

i∗(N) = argmax
i

|�i (N)| → i∗ = argmax
i

|�i | w.p.1.

Since there exists �i �= 0, we have �i∗ �= 0. By (21),
we have �(N) → �i∗ , �(N) → �, as w.p.1 as N → ∞.
For �∗(N) = [�0(N), �1(N), . . . , �n−1(N)]T, �∗(N) →
�∗ = F(Cn − H(��, �)) w.p.1, so as N → ∞,

�(N) = �−1H−1(Cn − F−1(�∗(N)), �(N))

→ �−1H−1(Cn − F−1(�∗), �) = � w.p.1. �

Similarly, for an exponentially scaled full-rank signal u ∈
Ue, the identification algorithms can be constructed and its
convergence can be derived similarly.

6. Asymptotic efficiency of the core identification
algorithms

The identification of the core problem contains the main idea
of the algorithms constructed in Section 5. In this section, the
efficiency of the core identification algorithms will be estab-
lished by comparing the error variance with the Cramér–Rao
lower bound.

6.1. Asymptotic analysis of empirical measures

Suppose that FN(x) is the N-sample empirical distribution
of the noise d at x ∈ R. Let �N(x) = √

N(FN(x) − F(x)).

Lemma 2. Under Assumption A1, the following assertions
hold.

(a) For any compact subset S ⊂ R, supx∈S |FN(x)−F(x)| →
0 w.p.1 as N → ∞.

(b) �N(·) converges weakly to �(·), a stretched Brownian
bridge process such that the covariance of �(·) is given by
E�(x)�(y) = min{F(x), F (y)} − F(x)F (y), ∀x, y ∈ R.

Remark 4. In the above, Assertion (a) is the well-known
Glivenko–Cantelli Theorem (Billingsley, 1968, p. 103),
whereas (b) is a rate of convergence result on the sampling
distribution. Lemma 2(b) indicates that �N(·) converges to
�(·). By virtue of the Skorohod representation (Kushner &
Yin, 2003, p. 230, with a slight abuse of notation), we may
assume that �N(·) → �(·) w.p.1 and the convergence takes
place uniformly on any compact set.

From (19), the ith component �̃i (N) of �̃(N) is the N-
sample empirical distribution of d̃(k) at C −H(�i�, �), denote

μi (N) = √
N(̃�i (N) − pi). Since d̃(i), i = 1, 2, . . . are i.i.d.,

for 0� i�m,

P {̃s(k(m + 1) + i) = 1} = P {̃s(i) = 1} = pi ,

P {̃s(k(m + 1) + i) = 0} = P {̃s(i) = 0} = 1 − pi .

Hence, the expectation Es̃(i)=pi , E(̃s(i)−pi)
2 =pi(1−pi),

and for 0� i < j �m, E(̃s(i) − pi)(̃s(j) − pj ) = 0.
Since d̃(i), i=1, 2, . . . are i.i.d., for i �= j , �i (N) and �j (N)

are independent, hence E�i (N)�j (N)= 0. Also, E(�i (N))2 =
NE(̃�i (N) − pi)

2 = E(̃s(i) − pi)
2 = pi(1 − pi). Let �(N) =

[�1(N), . . . , �m+1(N)]T. Then, the above expressions imply
that

E�(N)�(N)T → V as N → ∞
= diag(p0(1 − p0), . . . , pm(1 − pm)). (33)

In view of Lemma 2,

�(N) ∼ N(0, V ) as N → ∞. (34)

That is, �(N) converges in distribution to a normal random
vector with mean 0 and covariance V.

6.2. Asymptotic analysis of identification errors

The following analysis of identification errors is generic, and
hence is described without reference to specific algorithms. For
simplicity, for x ∈ R, denote B(x) = C − F−1(x). Then, by
(20) we have

p = [p0, . . . , pm]T = F(Cm+1 − 	) = B−1(	), (35)

where 	 is denoted as 	 = [	0, . . . , 	m]T. Let g(	) =
[g0(	), . . . , gm(	)]T = H−1(	). Then, 	(N), �(N) in Theorem
1 and � = [�0, . . . , �m]T can be written as

	(N) = B(̃�(N)), �(N) = g(	(N)), � = g(B(p)). (36)

The estimation error for � is e(N) = [e0(N), . . . , em(N)]T =
�(N) − �.

For � = g(	), the Jacobian matrix is

J (g(	)) = �g(	)

�	
=

⎡⎢⎢⎢⎢⎣
�g0(	)

�	0
. . .

�g0(	)

�	m
...

. . .
...

�gm(	)

�	0
. . .

�gm(	)

�	m

⎤⎥⎥⎥⎥⎦ ,

and for 	 = H(�),

J (H(�)) = �H(�)

��
=

⎡⎢⎢⎢⎢⎣
�h0(�)

��0
. . .

�h0(�)

��m

...
. . .

...
�hm(�)

��0
. . .

�hm(�)

��m

⎤⎥⎥⎥⎥⎦ .

Since 	 = H(�), we have

J (g(	))J (H(�)) = �g(	)

�	

�H(�)

��

= �g(H(�))

��
= ��

��
= Im+1.
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As a result, J (g(	)) = J (H(�))−1. From (35), we have 	i =
B(pi), i = 0, 1, . . . , m. It follows that the Jacobian matrix for
	 = B(p) is

J (B(p)) = diag

(
�B(p0)

�p0
, . . . ,

�B(pm)

�pm

)
,

and for p = B−1(	),

J (B−1(p)) = diag

(
�B−1(	0)

�	0
, . . . ,

�B−1(	m)

�	m

)
.

Theorem 5. 5Under Assumptions A1–A3, N�2(e(N)) =
NEe(N)e(N)T → �, as N → ∞, where � = WV WT with
W = J (g(	))J (B(p)) and V being given by (33).

Proof. See Appendix A.

6.3. Cramér–Rao lower bound and asymptotic efficiency

Consider N blocks of m+ 1 observations for the core identi-
fication problem. We first derive the Cramér–Rao lower bound
based on these N(m + 1) observation data. The Cramér–Rao
lower bound is denoted as �2

CR(N). To proceed, we first derive
a lemma and then Theorem 6 follows.

Lemma 3. The Cramér–Rao lower bound for estimating the
parameter �, based on observations of {S̃(k)}, is �2

CR(N) =
�/N .

Proof. See Appendix B.

Theorem 6. Under Assumptions A1–A3, N [�2(e(N)) −
�2

CR(N)] → 0 as N → ∞.

Proof. This follows directly from Theorem 5 and Lemma 3.
�

7. Recursive algorithms and convergence

This section develops a recursive algorithm for estimating
(�∗, �∗). The essence is to treat the parameters (�, �) jointly.
Define �=[�T, �T]T ∈ R(n+m)×1. For an (n+m)×2n(m+1)

matrix M, and for each �̃, define

G(�, �̃) = M [̃� − F(C2n(m+1) − H(�̃�, �)]. (37)

It is easily seen that the purpose of the matrix M is to make the
function under consideration “compatible” with the dimension
of the vector �. We use the following recursive algorithm for

5 The convergence in Theorem 5 is valid for disturbances whose proba-
bility density functions are in an exponential class: for some � > 0 and � > 0,

f (x)��e−�x2
. This implies that f (x) does not go to zero faster than the

exponential function of x2 as x → ∞. Since all commonly encountered den-
sity functions are in this class, for clarity and simplicity of presentation, we
will not state this condition explicitly.

parameter estimation

�(k + 1) = �(k) − 1

k + 1
�(k) + 1

k + 1
S(k + 1),

�(k + 1) = �(k) + �kG(�(k), �(k)), k = 0, 1, . . . , (38)

where S(k + 1) is defined in (15). In the above algorithm, �k

is a sequence of step sizes satisfying �k �0,
∑∞

k=1 �k = ∞,
�k → 0, and

�k − �k+1

�k

= O(�k) as k → ∞. (39)

Take for instance, �k=1/k� with 0 < ��1. Then, condition (39)
is satisfied. Commonly used step sizes include �k = O(1/k�)

with 1
2 < ��1.

Associated with (38), consider an ordinary differential equa-
tion (ODE)

�̇ = G(�), (40)

where G(�)=M(�−F(C2(m+1)n−H(�̃�, �)). �∗ is the unique
stationary point of (40). To proceed, we assume the following
assumption holds.

Assumption A4. The ODE (40) has a unique solution for each
initial condition; �∗=(�∗, �∗) is an asymptotically stable point
of (40); H(·) is continuous in its arguments together with its
inverse.

Remark 5. A sufficient condition to ensure the asymp-
totic stability of (40) can be obtained by linearizing M[� −
F(C2n(m+1) − H(�̃�, �))] about its stationary point �∗. Under
this linearization, if the Jacobian matrix −M(�F(C2n(m+1) −
H(�̃�∗, �∗))/��) is a stable matrix (that is, all of its eigen-
values are on the left-hand side of the complex plane), the
required asymptotic stability follows.

Theorem 7. Under Assumptions A1–A4, �(k) → � and
�(k) → �∗ w.p.1 as k → ∞.

Proof. Note that we have already proved that �(k) → � w.p.1.
Thus, to obtain the desired result, we need only to establish the
convergence of {�(k)}. To this end, we use the ODE methods
to complete the proof.

We will use the basic convergence theorem (Kushner & Yin,
2003, Theorem 6.1.1, p. 166). Thus, all needed is to verify the
conditions in the aforementioned theorem hold. Note that we
do not have a projection now, but in our recursion F is used
and is uniformly bounded. In view of Assumptions A1–A4, as
explained in Kushner and Yin (2003, Section 6.2, p. 170), to
verify the conditions in the theorem, we need only show that a
“rate of change” condition (see Kushner & Yin, 2003, p. 137,
for a definition) is satisfied. Thus, the remaining proof is to
verify this condition.

Define t0 =0, tk =∑k−1
i=0 �i , and let m(t) be the unique value

k such that tk � t < tk+1 when t �0, and set m(t) = 0 when
t < 0. Define the piecewise constant interpolation as �0(t) =
�(k) for tk � t < tk+1, and define the shifted sequence by
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�k(t) = �0(t + tk), t ∈ (−∞, ∞). Using the ODE methods,
we can show the sequence of functions �k(·) converges to the
solution of desired limit ODE. For m = 1, 2, . . ., and a fixed
�, denote

�(m) =
m−1∑
i=0

[G(�, �(i)) − G(�)],

and �0 = 0. In view of (37), G(·, ·) is a continuous function in
both variables � and �̃.

We note that by a partial summation, for any m, j �0,

m∑
i=j

�i[G(�, �(i)) − G(�)]

= �m�(m + 1) − �m�(j)

+
m−1∑
i=j

[�(i + 1) − �(j)](�i − �i+1).

Taking m=m(t)−1 and j =0, and recalling �0 =0, we obtain

m(t)−1∑
i=0

�i[G(�, �(i)) − G(�)]

= �m(t)�(m(t)) +
m(t)−2∑

i=0

�(i + 1)
�i − �i+1

�i

�i .

It is readily seen that as k → ∞, �k�(k) → 0 w.p.1. Thus, the
asymptotic rate of change of

∑m(t)−1
i=0 �i[G(�, �i ) − G(�)] is

zero w.p.1. Then by virtue of Kushner and Yin (2003, Theorem
6.1.1), the limit ODE is precisely (40). The asymptotic stability
of the ODE then leads to the desired result. �

Remark 6. Note that in (38), we could include additional ran-
dom noises (representing the measurement noise and other ex-
ternal noise). The treatment remains essentially the same. We
choose the current setup for notational simplicity.

8. Illustrative examples

In this section, we illustrate convergence of estimates from
the algorithms developed in this paper. The noise is gaussian
distributed zero mean and known variance, although the algo-
rithms are valid for all distribution functions that satisfy As-
sumption A1. The identification algorithm of Section 5 is shown
in Example 1, and the asymptotic efficiency is also illustrated
for the core identification problem. Example 2 illustrates the
recursive algorithm. The estimates of parameters are shown to
be convergent in both cases.

Example 1. Consider{
y(k) = H(x(k), �) + d(k) = b0 + ex(k) + d(k),

x(k) = a1u(k − 1) + a2u(k − 2),
(41)

where the noise {d(k)} is a sequence of i.i.d. normal random
variables with Ed1 = 0, �2

d = 1. For normal distribution, the
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Fig. 3. Joint identification errors of � and �.

support is (−∞, ∞). The output is measured by a binary-valued
sensor with threshold C = 3. The linear subsystem has order
n = 2. The nonlinear function is parameterized as b0 + ex .
The prior information on b0, and ai , i = 1, 2 is that b0, ai ∈
[0.5, 5]. Suppose the true values of unknown parameters are
� = [a1, a2] = [0.7, 0.63] and � = b0 = 1.1.

For n=2 and m=1, the input should be 2n(m+1)=8-periodic
with single period u = [�0v, �0v, �1v, �1v]. By Section 4.2,
H(x, �) is jointly identifiable with respect to Υ = {(�0, �1) :
�0 > 0, �1 < 0}. Let v=[1, 1.2], �0 =1 and �1 =−1. Define the
block variables X(j), Y (j), �̃(j), D(j) and S(j), in the case
of an 8-periodic input, �̃(j) = �̃ = [�T

1 , . . . , �T
4 ]T, where

�1 = �0� = � =
[
v2 v1

v1 v2

]
and �3 = �1�. Using (22), we can construct the algorithms in
Section 5.3.

The estimates of � and � are shown in Fig. 3, where the
errors are measured by the Euclidean norm. The algorithms
are simulated for five times. It is shown that both parameter
estimates of the linear and nonlinear subsystems converge to
their true values. In this simulation �(N) demonstrates a higher
convergence speed than �(N). A possible explanation is that
�(N) is updated first, and then used to obtain �(N). As a result,
convergence on �(N) can occur only after the error �(N) − �
is reduced.

To understand reliability of the estimation schemes, the esti-
mation algorithms are performed 500 times of total data length
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Fig. 4. Estimation error distributions.

2000 each. Estimation errors for each run are recorded at N =
500, 1000, and 2000. The error distributions are calculated
by histograms in Fig. 4, which illustrate improved estimation
accuracy with respect to data length N and are consistent with
the theoretical analysis.

Consider the core identification problem of (41)

Ỹ (l) = H(��, �) + D̃(l) = b012 + e�� + D̃(l),

where �=a0v2 +a1v1 �= 0 and �=[�0, �1]T. The convergence
of N [�2(e(N)) − �2

CR(N)] in Theorem 6 is shown in Fig. 5,
where the error is measured by the Frobenius norm.

Example 2. We use the same system and inputs as in Example
1. The recursive algorithms in Section 7 are now used.

Let �1 = 0.5 and � = [�T, �T]T. For system (41), the ODE
(40) becomes

�̇ = M[� − F(C8 − b18 − exp(�̃�))].
Choose �k = 1/k and

M = −
⎡⎢⎣1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

⎤⎥⎦ .
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Fig. 5. Asymptotic efficiency.

Then the Jacobian matrix can be calculated to be

J (�) = − M[�F(C8 − b18 − exp(�̃�))/��]

=
⎡⎢⎣−0.660 −0.247 −0.429

−0.242 −0.645 −0.434

−0.210 −0.079 −0.397

⎤⎥⎦ .
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Fig. 6. Estimation errors of � using recursive algorithms.

The eigenvalues of J (�) are [−1.08, −0.402, −0.220], which
are all less than 0. As a result, the Jacobin matrix J (�) is stable.

Let �(k)=[�(k)T, �(k)T]T be the estimates of �=[�T, �T]T.
Then the recursive algorithms can be constructed as follows:
First, set �k = 1/k, �(1) = [1.5, 1.5, 1.5]T, and �1 = 08. The
estimates are then updated according to (38). Convergence of
the sequence of estimates of � is shown in Fig. 6, where the
errors are measured by the Euclidean norm and the algorithms
are simulated for five times.

Remark 7. It is easy to see that when �(N) → � and �(N) →
�, the prediction of the output H(��, �) converges to the true
output H(��, �). This implies that one can use the parameter
estimation errors as a good indicator for output prediction er-
rors. For this reason, the output prediction errors are not plotted
here.

9. Concluding remarks

In this paper, identification of Wiener systems with binary-
valued output observations is studied. Unlike traditional
approximate gradient methods or covariance analysis, we em-
ploy the methods of empirical measures. Under assumptions of
known disturbance distribution function, invertible nonlinearity
and joint identifiability, identification algorithms, convergence
properties, and identification efficiency are derived.

We have assumed that the structure and order of the linear
dynamics and nonlinear function are known. The issues of un-
modeled dynamics (for the linear subsystem when the system
order is higher than the model order) and model mismatch (for
the nonlinear part when the nonlinear function does not belong
to the model class) are not included in this paper, mainly due
to page limitations. Irreducible identification errors due to un-
modeled dynamics were characterized in Wang et al. (2003).
The impact of model mismatch on identification errors were
presented in Yin, Kan, and Wang (2006).

There are many potential extensions of the results in this pa-
per. For example, when the sensor threshold value and/or the

noise distribution function are unknown, combined identifica-
tion of systems, distribution functions and sensor thresholds is
of practical importance. Some related results can be found in
Wang et al. (2006a). For other typical nonlinear structures, such
as Hammerstein systems and kernel systems, similar identifi-
cation problems can be pursued.

Acknowledgments

The research of Yanlong Zhao and Ji-Feng Zhang was sup-
ported by the National Natural Science Foundation of China
under Grants 60221301, 60674038. The research of LeYi Wang
was supported in part by the National Science Foundation un-
der ECS-0329597 and DMS-0624849, in part by the Michigan
Economic Development Council, and in part by Wayne State
University Research Enhancement Program. The research of
GeorgeYin was supported in part by the National Science Foun-
dation under DMS-0603287 and DMS-0624849, and in part by
Wayne State University Research Enhancement Program.

Appendix A. Proof of Theorem 5

Consider

ei(N) = �i (N) − �i = gi(	(N)) − gi(	), i = 0, . . . , m,

where 	(N) = [	0(N), . . . , 	m(N)]T, �(N) = [�0(N), . . . ,

�m(N)]T, � and 	 are given by (36) and (7), respectively. Denote

�(N) = [min{	0(N), 	0}, max{	0(N), 	0}]
× · · · × [min{	m(N), 	m}, max{	m(N), 	m}]

as the Cartesian product (Royden, 1988, p. 3) of sets
[min{	i (N), 	i}, max{	i (N), 	i}], for i = 0, . . . , m.

For j = 0, . . . , m − 1, denote

	̃j (N) = [	0, . . . , 	j , 	j+1(N), . . . , 	m(N)]T,

	̃−1(N) = [	0(N), . . . , 	m(N)]T and 	̃m(N) = 	.

Then

ei(N) = gi(	(N)) − gi(	)

=
m−1∑
j=−1

[gi (̃	j (N)) − gi (̃	j+1(N))].

Since H(·) is continuous, by the well-known mean value the-
orem, there exists ij (N) ∈ �(N) for j = 0, . . . , m such that

gi (̃	j (N)) − gi (̃	j+1(N)) = �gi(ij (N))

�	j

(	j (N) − 	j ),

which implies

ei(N) =
m∑

j=0

�gi(ij (N))

�	j

(	j (N) − 	j )

=
[
�gi(i0(N))

�	0
, . . . ,

�gi(im(N))

�	m

]
(	(N) − 	).
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Thus

e(N) = L(N)(	(N) − 	), (A.1)

where

L(N) =

⎡⎢⎢⎢⎢⎢⎣
�g0(00(N))

�	0
. . .

�g0(0m(N))

�	m

...
. . .

...

�gm(m0(N))

�	0
. . .

�gm(mm(N))

�	m

⎤⎥⎥⎥⎥⎥⎦ .

Since 	i (N) = B(̃�i (N)), i = 0, 1, . . . , m, by the mean value
theorem, there exists �i (N) on the line segment �̃i (N) and pi

such that

	(N) − 	 = diag

(
�B(�0(N))

�p0
, . . . ,

�B(�m(N))

�pm

)
× (̃�(N) − p). (A.2)

Moreover, as N → ∞, w.p.1,

L(N)diag

(
�B(�0(N))

�p0
, . . . ,

�B(�m(N))

�pm

)
→ W . (A.3)

Using (A.1), and by virtue of (34), (A.2), and (A.3), as N →
∞, NEe(N)e(N)T → WV WT = �.

Appendix B. Proof of Lemma 3

Let x(k) take values in {0,1}. The likelihood function, which
is the joint distribution of s̃(1), . . . , s̃(N(m + 1)), depending
on � = [�0, . . . , �m]T = [�, �T]T, is given by

l(N)

= P {̃s(1) = x(1), . . . , s̃(N(m + 1)) = x(N(m + 1)); �}

=
m∏

k=0

P {̃s(kN + 1) = x(kN + 1),

. . . , s̃(kN + m + 1) = x((k + 1)N); �}.
Replace x(k)’s by their corresponding random elements s̃(k)’s,
and denote the resulting quantity by l in short. Then, we have

log l(N)

= log

[
m∏

k=0

pk(�)
N �̃k(N)(1 − pk(�))

N(1−�̃k(N))

]

= N

m∑
k=0

[̃�k(N) log pk(�) + (1 − �̃k(N)) log(1 − pk(�))],

� log l(N)

��i

= N

m∑
k=0

(
�̃k(N)

pk

− 1 − �̃k(N)

1 − pk

)
�pk

�	k

�	k

��i

,

� log l(N)

��
=
[
� log l(N)

��0
, . . . ,

� log l(N)

��m

]T

.

Furthermore, for i, j = 0, . . . , m,

�2 log l(N)

��i��j

= N

m∑
k=0

[(
− �̃k(N)

p2
k

− 1 − �̃k(N)

(1 − pk)
2

)
�pk

��i

�pk

��j

+
(

�̃k(N)

pk

− 1 − �̃k(N)

1 − pk

)
�2pk

��i��j

]
.

As a result,

E
�2 log l(N)

��i��j

= NE

m∑
k=0

[(
− �̃k(N)

p2
k

− 1 − �̃k(N)

(1 − pk)
2

)
�pk

��i

�pk

��j

+
(

�̃k(N)

pk

− 1 − �̃k(N)

1 − pk

)
�2pk

��i��j

]

= −N

m∑
k=0

1

pk(1 − pk)

�pk

��i

�pk

��j

= −N

m∑
k=0

1

pk(1 − pk)

(
�pk

�	k

)2 �	k

��i

�	k

��j

,

and

E
�2 log l(N)

����
= −NW−1V −1(WT)−1.

The Cramér–Rao lower bound is then given by

�2
CR(N) = −

(
E

�2 log l(N)

����

)−1

= WV WT

N
= �

N
.
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